# **Compact Fusion Reactor - CFR**



Overview, Status And Development Plan 28 August 2017

LOCKHEED MARTIN

Dr. Thomas J. McGuire tom.mcguire@lmco.com

# CFR –Diamagnetic Sheath Confinement





### CFR - Compact Fusion Reactor Concept





100 MW electric output - 80,000 homes
Compact and elegant, 15.5 m X 6.5 m OD
200-1000 metric tons
Cheap and safe to build and operate
Burns < 20 kg DT fuel/year



ΤX



**Applications** 

LCS-1



C-5



### CFR - Systematic Development Plan



**Ultimate goal: Achieve reactor conditions** 

T5 Goal: Show plasma heating and inflation, measure sheaths and losses

- · Demo high density plasma source
- Demo neutral beam capture / confinement
- Measure sheath size, cusp losses
- Characterize kinetic and fluid instabilities

**T6 High temperature experiment** 

- Magnetic shielding of stalks
- High field superconducting coil design

T7 DD reactor conditions demonstration

Full power and size

T8 DT ignited reactor demonstration

Alpha product confinement / stability

#### TX reactor development

- Modular, survivable blanket
- Tritium breeding and processing
- Robust subsystems development
- Regulatory regime and deployment





### CFR - T4B Heating Experiment



#### **Experiment parameters**

- B<sub>p</sub> = 0.1 T, vacuum plasma edge field
- $B_{ring} = 0.23 \text{ T, } MR_{ring} = 1.3$
- $B_{mirror} = 0.47, MR_{mirror} = 2.6$
- $V = 0.2 \text{ m}^3$
- E = 1170 J, plasma energy at high Beta
  - $P_{in} = 500 \text{ kW} -> \tau > 2.3 \text{ ms}$
- Source/target predicted parameters:
  - n = 5·10<sup>19</sup> m<sup>-3</sup>, T<sub>e</sub> = 5 eV, E = 12 J, P ~ 150 kW -> t = 80 μs
- Heating predicted parameters:
  - n = 5·10<sup>19</sup> m<sup>-3</sup>, (T<sub>e</sub> = 200 eV, T<sub>i</sub> = 120 eV at high Beta)
  - 18 ms energy confinement time
- P<sub>heat</sub> = 500 kW should be sufficient to get high Beta
  - Over 3 ms,  $E_{in}$  = 1500 J
  - $t_{\rm fie}$  = 13  $\mu s$  @  $T_{\rm e}$  = 10 eV  $\,t_{\rm fie}$  = 1.8 ms @  $T_{\rm e}$  = 250 eV
- $\rho_i$  = 6.7 mm @  $T_i$  = 75 eV fits well within field geometry
  - 3.7 cm minimum gap between ring cusp null line and wall



Source Parameters  $P_{LaB6} = 70 \text{ kW}$   $n_e > 2.10^{19} \text{ m}^{-3}$   $T_e = 4 \text{ eV}$  t = 1 ms



## **CFR - Acceleration Opportunities**



Potential accelerator and collaborative efforts

### Fusion Physics Demonstration

- Modeling and predictive capabilities
- Source development
- **Diagnostics**
- Neutral beam development
- Internal coil support magnetic shielding

### Fusion Engineering Development

- High temperature superconducting coils
- Blanket and power plant concept design
- Tritium regulatory planning
- Reactor material development







### CFR – The Path to Clean, Unlimited Energy



- CFR concept efficient & stable magnetic confinement
- Rapid design cycles build toward self-heating system and 100 MW<sub>e</sub> scale power plants in 2020s
- Results to date are promising stable cold, dense target plasma suitable for neutral beam heating
- Upcoming heating experiments will investigate transition to high beta, sheath mode of confinement
- Modeling, diagnostics, and long lead subsystems are good opportunities for collaboration and parallel development to accelerate progress



